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M PROOF OF THE DIVERGENCE THEOREM AND STOKES’ THEOREM

In this section we give proofs of the Divergence Theorem and Stokes’ Theorem using the definitions
in Cartesian coordinates.

Proof of the Divergence Theorem
Let ~F be a smooth vector field defined on a solid region V with boundary surface A oriented
outward. We wish to show that

∫

A

~F · d ~A =

∫

V

div ~F dV.

For the Divergence Theorem, we use the same approach as we used for Green’s Theorem; first
prove the theorem for rectangular regions, then use the change of variables formula to prove it for
regions parameterized by rectangular regions, and finally paste such regions together to form general
regions.

Proof for Rectangular Solids with Sides Parallel to the Axes

Consider a smooth vector field ~F defined on the rectangular solid V : a ≤ x ≤ b, c ≤ y ≤ d,
e ≤ z ≤ f . (See Figure M.50). We start by computing the flux of ~F through the two faces of V
perpendicular to the x-axis, A1 and A2, both oriented outward:

∫

A1

~F · d ~A +

∫

A2

~F · d ~A = −
∫ f

e

∫ d

c

F1(a, y, z) dy dz +

∫ f

e

∫ d

c

F1(b, y, z) dy dz

=

∫ f

e

∫ d

c

(F1(b, y, z)− F1(a, y, z)) dy dz.

By the Fundamental Theorem of Calculus,

F1(b, y, z)− F1(a, y, z) =

∫ b

a

∂F1

∂x
dx,

so
∫

A1

~F · d ~A +

∫

A2

~F · d ~A =

∫ f

e

∫ d

c

∫ b

a

∂F1

∂x
dx dy dz =

∫

V

∂F1

∂x
dV.

By a similar argument, we can show

∫

A3

~F · d ~A +

∫

A4

~F · d ~A =

∫

V

∂F2

∂y
dV and

∫

A5

~F · d ~A +

∫

A6

~F · d ~A =

∫

V

∂F3

∂z
dV.

Adding these, we get

∫

A

~F · d ~A =

∫

V

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dV =

∫

V

div ~F dV.

This is the Divergence Theorem for the region V .
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Figure M.50: Rectangular solid V in
xyz-space
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Figure M.51: A rectangular solid W in stu-space and the corresponding
curved solid V in xyz-space

Proof for Regions Parameterized by Rectangular Solids

Now suppose we have a smooth change of coordinates

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u).

Consider a curved solid V in xyz-space corresponding to a rectangular solid W in stu-space. See
Figure M.51. We suppose that the change of coordinates is one-to-one on the interior of W , and
that its Jacobian determinant is positive on W . We prove the Divergence Theorem for V using the
Divergence Theorem for W .

Let A be the boundary of V . To prove the Divergence Theorem for V , we must show that
∫

A

~F · d ~A =

∫

V

div ~F dV.

First we express the flux through A as a flux integral in stu-space over S, the boundary of the
rectangular region W . In vector notation the change of coordinates is

~r = ~r (s, t, u) = x(s, t, u)~i + y(s, t, u)~j + z(s, t, u)~k .

The face A1 of V is parameterized by

~r = ~r (a, t, u), c ≤ t ≤ d, e ≤ u ≤ f,

so on this face
d ~A = ±∂~r

∂t
× ∂~r

∂u
dt du.

In fact, in order to make d ~A point outward, we must choose the negative sign. (Problem 3 on
page 73 shows how this follows from the fact that the Jacobian determinant is positive.) Thus, if S1

is the face s = a of W ,
∫

A1

~F · d ~A = −
∫

S1

~F · ∂~r
∂t
× ∂~r

∂u
dt du,

The outward pointing area element on S1 is d~S = −~i dt du. Therefore, if we choose a vector field
~G on stu-space whose component in the s-direction is

G1 = ~F · ∂~r
∂t
× ∂~r

∂u
,

we have ∫

A1

~F · d ~A =

∫

S1

~G · d~S .
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Similarly, if we define the t and u components of ~G by

G2 = ~F · ∂~r
∂u
× ∂~r

∂s
and G3 = ~F · ∂~r

∂s
× ∂~r

∂t
,

then ∫

Ai

~F · d ~A =

∫

Si

~G · d~S , i = 2, . . . , 6.

(See Problem 4.) Adding the integrals for all the faces, we find that
∫

A

~F · d ~A =

∫

S

~G · d~S .

Since we have already proved the Divergence Theorem for the rectangular region W , we have
∫

S

~G · d~S =

∫

W

div ~G dW,

where
div ~G =

∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u
.

Problems 5 and 6 on page 73 show that

∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u
=

∣∣∣∣
∂(x, y, z)

∂(s, t, u)

∣∣∣∣
(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
.

So, by the three-variable change of variables formula on page 61,
∫

V

div ~F dV =

∫

V

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx dy dz

=

∫

W

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

) ∣∣∣∣
∂(x, y, z)

∂(s, t, u)

∣∣∣∣ ds dt du

=

∫

W

(
∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u

)
ds dt du

=

∫

W

div ~G dW.

In summary, we have shown that
∫

A

~F · d ~A =

∫

S

~G · d~S

and ∫

V

div ~F dV =

∫

W

div ~G dW.

By the Divergence Theorem for rectangular solids, the right-hand sides of these equations are equal,
so the left-hand sides are equal also. This proves the Divergence Theorem for the curved region V .

Pasting Regions Together

As in the proof of Green’s Theorem, we prove the Divergence Theorem for more general regions
by pasting smaller regions together along common faces. Suppose the solid region V is formed by
pasting together solids V1 and V2 along a common face, as in Figure M.52.

The surface A which bounds V is formed by joining the surfaces A1 and A2 which bound V1

and V2, and then deleting the common face. The outward flux integral of a vector field ~F through
A1 includes the integral across the common face, and the outward flux integral of ~F through A2
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Figure M.52: Region V formed by
pasting together V1 and V2

includes the integral over the same face, but oriented in the opposite direction. Thus, when we add
the integrals together, the contributions from the common face cancel, and we get the flux integral
through A. Thus we have

∫

A

~F · d ~A =

∫

A1

~F · d ~A +

∫

A2

~F · d ~A .

But we also have ∫

V

div ~F dV =

∫

V1

div ~F dV +

∫

V2

div ~F dV.

So the Divergence Theorem for V follows from the Divergence Theorem for V1 and V2. Hence we
have proved the Divergence Theorem for any region formed by pasting together regions that can be
smoothly parameterized by rectangular solids.

Example 1 Let V be a spherical ball of radius 2, centered at the origin, with a concentric ball of radius 1
removed. Using spherical coordinates, show that the proof of the Divergence Theorem we have
given applies to V .

Solution We cut V into two hollowed hemispheres like the one shown in Figure M.53, W . In spherical
coordinates, W is the rectangle 1 ≤ ρ ≤ 2, 0 ≤ φ ≤ π, 0 ≤ θ ≤ π. Each face of this rectangle
becomes part of the boundary of W . The faces ρ = 1 and ρ = 2 become the inner and outer
hemispherical surfaces that form part of the boundary ofW . The faces θ = 0 and θ = π become the
two halves of the flat part of the boundary of W . The faces φ = 0 and φ = π become line segments
along the z-axis. We can form V by pasting together two solid regions likeW along the flat surfaces
where θ = constant.
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Figure M.53: The hollow hemisphere W and the corresponding rectangular region in
ρθφ-space
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Proof of Stokes’ Theorem
Consider an oriented surface A, bounded by the curve B. We want to prove Stokes’ Theorem:

∫

A

curl ~F · d ~A =

∫

B

~F · d~r .

We suppose that A has a smooth parameterization ~r = ~r (s, t), so that A corresponds to a region R
in the st-plane, andB corresponds to the boundaryC ofR. See Figure M.54. We prove Stokes’ The-
orem for the surface A and a continuously differentiable vector field ~F by expressing the integrals
on both sides of the theorem in terms of s and t, and using Green’s Theorem in the st-plane.

First, we convert the line integral
∫
B
~F · d~r into a line integral around C:

∫

B

~F · d~r =

∫

C

~F · ∂~r
∂s

ds+ ~F · ∂~r
∂t

dt.

So if we define a 2-dimensional vector field ~G = (G1, G2) on the st-plane by

G1 = ~F · ∂~r
∂s

and G2 = ~F · ∂~r
∂t
,

then ∫

B

~F · d~r =

∫

C

~G · d~s ,

using ~s to denote the position vector of a point in the st-plane.
What about the flux integral

∫
A

curl ~F · d ~A that occurs on the other side of Stokes’ Theorem?
In terms of the parameterization,

∫

A

curl ~F · d ~A =

∫

R

curl ~F · ∂~r
∂s
× ∂~r

∂t
ds dt.

In Problem 7 on page 74 we show that

curl ~F · ∂~r
∂s
× ∂~r

∂t
=
∂G2

∂s
− ∂G1

∂t
.

Hence ∫

A

curl ~F · d ~A =

∫

R

(
∂G2

∂s
− ∂G1

∂t

)
ds dt.

We have already seen that ∫

B

~F · d~r =

∫

C

~G · d~s .

By Green’s Theorem, the right-hand sides of the last two equations are equal. Hence the left-hand
sides are equal as well, which is what we had to prove for Stokes’ Theorem.
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Figure M.54: A region R in the st-plane and the corresponding surface A in xyz-space; the curve C
corresponds to the boundary of B
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Problems for Section M
1. Let W be a solid circular cylinder along the z-axis, with

a smaller concentric cylinder removed. Parameterize W
by a rectangular solid in rθz-space, where r, θ, and z are
cylindrical coordinates.

2. In this section we proved the Divergence Theorem using
the coordinate definition of divergence. Now we use the
Divergence Theorem to show that the coordinate defini-
tion is the same as the geometric definition. Suppose ~F
is smooth in a neighborhood of (x0, y0, z0), and let UR
be the ball of radius R with center (x0, y0, z0). Let mR

be the minimum value of div ~F on UR and let MR be
the maximum value.

(a) Let SR be the sphere bounding UR. Show that

mR ≤
∫
SR

~F · d ~A
Volume of UR

≤MR.

(b) Explain why we can conclude that

lim
R→0

∫
SR

~F · d ~A
Volume of UR

= div ~F (x0, y0, z0).

(c) Explain why the statement in part (b) remains true
if we replace UR with a cube of side R, centered at
(x0, y0, z0).

Problems 3–6 fill in the details of the proof of the Divergence
Theorem.

3. Figure M.51 on page 69 shows the solid region V in xyz-
space parameterized by a rectangular solid W in stu-
space using the continuously differentiable change of co-
ordinates

~r = ~r (s, t, u), a ≤ s ≤ b, c ≤ t ≤ d, e ≤ u ≤ f.

Suppose that
∂~r

∂s
·
(
∂~r

∂t
× ∂~r

∂u

)
is positive.

(a) Let A1 be the face of V corresponding to the face

s = a of W . Show that
∂~r

∂s
, if it is not zero, points

into W .
(b) Show that −∂~r

∂t
× ∂~r

∂u
is an outward pointing nor-

mal on A1.
(c) Find an outward pointing normal on A2, the face of

V where s = b.

4. Show that for the other five faces of the solid V in the
proof of the Divergence Theorem (see page 70):

∫

Ai

~F · d ~A =

∫

Si

~G · d~S , i = 2, 3, 4, 5, 6.

5. Suppose that ~F is a continuously differentiable vector
field and that ~a ,~b , and ~c are vectors. In this problem we
prove the formula

grad( ~F ·~b × ~c ) · ~a + grad( ~F · ~c × ~a ) ·~b
+ grad( ~F · ~a ×~b ) · ~c = (~a ·~b × ~c ) div ~F .

(a) Interpreting the divergence as flux density, explain
why the formula makes sense. [Hint: Consider the
flux out of a small parallelepiped with edges parallel
to ~a ,~b , ~c .]

(b) Say how many terms there are in the expansion of
the left-hand side of the formula in Cartesian coor-
dinates, without actually doing the expansion.

(c) Write down all the terms on the left-hand side that
contain ∂F1/∂x. Show that these terms add up to

~a ·~b × ~c ∂F1

∂x
.

(d) Write down all the terms that contain ∂F1/∂y. Show
that these add to zero.

(e) Explain how the expressions involving the other
seven partial derivatives will work out, and how this
verifies that the formula holds.

6. Let ~F be a smooth vector field in 3-space, and let

x = x(s, t, u), y = y(s, t, u), z = z(s, t, u)

be a smooth change of variables, which we will write in
vector form as

~r = ~r (s, t, u) = x(s, t, u)~i +y(s, t, u)~j +z(s, t, u)~k .

Define a vector field ~G = (G1, G2, G3) on stu-space
by

G1 = ~F · ∂~r
∂t
× ∂~r

∂u
G2 = ~F · ∂~r

∂u
× ∂~r

∂s

G3 = ~F · ∂~r
∂s
× ∂~r

∂t
.

(a) Show that

∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u
=
∂ ~F

∂s
· ∂~r
∂t
× ∂~r

∂u

+
∂ ~F

∂t
· ∂~r
∂u
× ∂~r

∂s
+
∂ ~F

∂u
· ∂~r
∂s
× ∂~r

∂t
.

(b) Let ~r 0 = ~r (s0, t0, u0), and let

~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0), ~c =

∂~r

∂u
(~r 0).

Use the chain rule to show that
(
∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u

) ∣∣∣∣
~r =~r 0

=

grad( ~F ·~b × ~c ) · ~a + grad( ~F · ~c × ~a ) ·~b
+ grad( ~F · ~a ×~b ) · ~c .
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(c) Use Problem 5 to show that

∂G1

∂s
+
∂G2

∂t
+
∂G3

∂u
=

∣∣∣∣
∂(x, y, z)

∂(s, t, u)

∣∣∣∣
(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
.

7. This problem completes the proof of Stokes’ Theorem.
Let ~F be a smooth vector field in 3-space, and let S
be a surface parameterized by ~r = ~r (s, t). Let ~r 0 =
~r (s0, t0) be a fixed point on S. We define a vector field
in st-space as on page 72:

G1 = ~F · ∂~r
∂s

G2 = ~F · ∂~r
∂t
.

(a) Let ~a =
∂~r

∂s
(~r 0), ~b =

∂~r

∂t
(~r 0). Show that

∂G1

∂t
(~r 0)− ∂G2

∂s
(~r 0) =

grad( ~F · ~a ) ·~b − grad( ~F ·~b ) · ~a .

(b) Use Problem 30 on page 961 of the textbook to show

curl ~F · ∂~r
∂s
× ∂~r

∂t
=
∂G2

∂s
− ∂G1

∂t
.


